If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2+5w-492=0
a = 3; b = 5; c = -492;
Δ = b2-4ac
Δ = 52-4·3·(-492)
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5929}=77$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-77}{2*3}=\frac{-82}{6} =-13+2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+77}{2*3}=\frac{72}{6} =12 $
| 6x+38=4x+22 | | 8x–22=10 | | 10x=5.000 | | F(x)=3x2-2x+7 | | `(x-3)(x+5)(2x+11)=0` | | 1/2r−3/4=1/2 | | 3x2=2 | | Z=X×Y/X+y | | -3+6(5x-2)=-12 | | 3w=-123 | | -6h=240 | | 2-x-3(6x-11)=-7 | | (0.7x7)+-3.2=1.7 | | 8x-13+x+21=180 | | 8x-13+x+21=90 | | (5088/2)*(x/18)=50 | | 3(29+5)+(3a+1)=109 | | 11x=10-x | | F(x)=4-16 | | 1/5v+6=(-4) | | 11^(3x)=9 | | 225=3x+75 | | 3x-44=x+20 | | 1-14x+12x+17=180 | | 16x-4=12x+8 | | –w+9(–6w+8)=7w+9+w | | (3x-2)^(2)=0 | | D3-6D2+12D-8)y=0 | | 4x+25x=124x-53 | | m+18=31 | | 7-2y=10-9y+7y | | Y=5x-2/3 |